PENGERTIAN DAN JENIS-JENIS MATRIKS

Posted by on 24 October 2014 - 8:31 AM

Matriks adalah susunan kumpulan bilangan yang diatur dalam baris dan kolom berbentuk persegi panjang. Matriks dicirikan dengan elemen-elemen penyusun yang diapit oleh tanda kurung siku [ ] atau tanda kurung biasa ( ). Ukuran sebuah matriks dinyatakan dalam satuan ordo, yaitu banyaknya baris dan kolom dalam matriks tersebut. Ordo merupakan karakteristik suatu matriks yang menjadi patokan dalam operasi-operasi antar matriks.

Memahami ordo matriks merupakan hal yang penting karena cukup banyak terjadi kesalahan dalam mengerjakan soal-soal matriks yang disebabkan oleh kekeliruan dalam memahami ordo matriks. Ketika seorang murid mengartikan ordo secara terbalik yaitu kolom dikali baris tentu hasilnya akan sangat berbeda. Matriks umumnya disimbolkan seperti berikut ini :

Amxn

Keterangan :
A = nama matriks
m = banyaknya baris
n  = banyaknya kolom
m x n = ordo matriks

Jenis-jenis Matriks

Untuk mempermudah mempelajari jenis-jenis matriks, ada baiknya kita telebih dahulu memahami pengertian diagonal dalam matriks. Pada matriks terdapat dua dioganal, yaitu diagonal utama dan diagonal skunder. Pengertian diagonal utama dan diagonal skunder dapat dilihat dari gambar berikut ini :
diagonal matriks
Pada gambar di atas, diagonal utama merupakan garis miring yang dibentuk oleh elemen matriks 5, 7, dan 1 sedangkan diagonal sekunder merupakan garis miring yang dibentuk oleh elemen matriks 3, 7, dan 3.

Berdasarkan Jumlah Baris dan Kolom

Berdasarkan jumlah baris dan kolomnya, secara umum matriks dibagi menjadi lima jenis, yaitu :
  1. Matriks persegi
    Matriks persegi adalah matriks yang banyak baris dan kolomnya sama. Dengan kata lain, matriks persegi memiliki ordo n x n seperti 2x2, 3x3, 4x4, dan sterusnya.

    matriks persegi
    Matriks persegi 3 x 3

  2. Matriks baris
    Matriks baris adalah matriks yang terdiri dari satu baris dan beberapa kolom. Matriks baris memiliki ordo 1 x n ; dengan n > 1 seperti 1x3, 1x5, dan lain sebagainya.

    matriks baris
    Matriks baris 1 x 3

  3. Matriks kolom
    Matriks kolom adalah matriks yang terdiri dari satu kolom dan beberapa baris. Mariks kolom memiliki ordo n x 1 ; dengan n > 1 seperti 3x1, 4x1, dan lain sebagainya.

    matriks kolom
    Matriks kolom 3 x 1

  4. Matriks mendatar
    Matriks mendatar adalah matriks yang jumlah kolomnya lebih banyak dari jumlah barisnya misalnya matriks dengan ordo 2x4, 2x6, dan lain sebagainya.

    matriks mendatar
    Matriks mendatar 3 x 5

  5. Matriks tegak
    Matriks tegak adalah matriks yang jumlah barisnya lebih banyak dari jumlah kolomnya misalnya matriks dengan ordo 4x2, 6x3, dan lain sebagainya.
    matriks tegak
    Matriks tegak 3 x 2

Berdasarkan Pola Elemennya

Berdasarkan pola elemen-elemennya, matriks dibagi menjadi beberapa jenis, yaitu :
  1. Matriks nol
    Matriks nol adalah matriks berordo m x n yang elemen-elemennya bernilai nol.
    matriks nol
    Matriks nol 3 x 3

  2. Matriks diagonal
    Matriks diagonal adalah matriks persegi yang elemen-elemen selain diagonal utama bernilai nol.

    matriks diagonal
    Matriks diagonal 3 x 3

  3. Matriks identitas
    Matriks identitas adalah matriks persegi yang elemen-elemen di diagonal utamanya bernilai 1 dan elemen-elemen selain diagonal utama bernilai nol.

    matriks identitas
    Matriks identitas 3 x 3

  4. Matriks segitiga
    Matriks segitiga terdiri dari dua jenis yaitu matriks segitiga atas dan matriks segitiga bawah. Matriks segitiga atas merupakan matriks yang elemen-elemen di bawah diagonal utamanya bernilai nol. Matriks segitiga bawah merupakan matriks yang elemen-elemen di atas diagonal utamanya bernilai nol.

    matriks segitiga atas
    Matriks segitiga atas
    matriks segitiga bawah
    Matriks segitiga bawah

  5. Matriks simetris
    Matriks simetris adalah matriks yang elemen-elemen di bawah dan di atas diagonal utamanya simetris. Dengan kata lain, elemen pada sel mn sama dengan elemen pada sel nm, misalnya elemen pada sel 12 sama dengan elemen pada sel 21. Pada gambar di bawah dapat dilihat bahwa elemen pada sel 21 sama dengan elemen pada sel 12 yaitu 2.

    matriks simetris
    Matriks simetris 3 x 3

  6. Matriks skalar
    Matriks skalar adalah matriks yang elemen-elemen pada diagonal utamanya sama dan elemen lain bernilai nol.

    matriks skalar
    Matriks skalar 3 x 3

Kesamaan Matriks 

Dua atau lebih matriks dikatakan sama bila memiliki ordo sama dan memiliki komponen yang sama pada setiap selnya. Dengan kata lain, matriks-matriks tersebut adalah matriks yang sama hanya berbeda nama. 



Bila matriks A dan B dinyatakan sama, maka :
A = B





Berlaku :
a = p; b = q ; c = r;
d = s; e = t;  f = u 
g = v; h = w; l = x

"Rahasia kecerdasan bukan terletak pada mempelajari apa yang disenangi, tetapi pada menyenangi apa yang sedang dipelajari." 



Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements