CONTOH SOAL DAN JAWABAN MEMBENTUK FUNGSI KUADRAT

Posted by on 01 June 2015 - 8:30 AM

  1. Sebuah fungsi kuadrat memotong sumbu x di P(1,0) dan Q(2,0). Jika fungsi kuadrat tersebut melalui titik (0,6), maka persamaan fungsi kuadrat tersebut adalah .....
    A. y = f(x) = 3x2 + 6x + 9
    B. y = f(x) = 3x2 − 9x + 6
    C. y = f(x) = 3x2 + 9x + 6
    D. y = f(x) = 3x2 − 9x − 6
    E. y = f(x) = 3x2 − 6x + 9

    Pembahasan :
    Jika grafik fungsi kuadrat memotong sumbu x di dua titik (x1,0) dan (x2, 0), serta melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat dinyatakan dengan :

    Substitusikan nilai x dan y dari titik-titik yang diketahui kemudan cari nilai a. Setelah nilai a diperoleh, masukkan nilai tersebut ke dalam persamaan.

    Pada soal diketahui :
    x1 = 1 dan x2 = 2, y = 6

    Substitusi nilai x :
    ⇒ y = f(x) = a(x − x1)(x − x2)
    ⇒ y = a(x − 1)(x − 2)

    Selanjutnya kita substitusikan nilai y dari titik (0,6). Arti dari titik tersebut adalah, nilai x pada persamaan fungsi kuadrat akan bernilai nol jika y = 6. Kita peroleh nilai a :
    ⇒ y = a(x − 1)(x − 2)
    ⇒ 6 = a(0 − 1)(0 − 2)
    ⇒ 6 = a(-1)(-2)
    ⇒ a = 3

    Substitusi nilai a :
    ⇒ y = 3(x − 1)(x − 2)
    ⇒ y = 3(x2 − 3x + 2)
    ⇒ y = 3x2 − 9x + 6
    Jadi, persamaan fungsi kuadratnya adalah y = f(x) = 3x2 − 9x + 6.
    Jawaban : B

  2. Jika sebuah fungsi kuadrat menyinggung sumbu x di titik (4,0) dan melalui titik (0,16), maka persamaan fungsi kuadrat tersebut adalah .....
    A. f(x) = x2 − 8x + 16D.  f(x) = x2 − 16x + 8
    B. f(x) = x2 + 8x + 16E.  f(x) = x2 + 16x − 8
    C. f(x) = x2 − 8x − 16

    Pembahasan :
    Jika grafik fungsi kuadrat menyinggung sumbu x di titik (x1,0), dan melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dinyatakan dengan :

    y = f(x) = a(x − x1)2

    Pada soal diketahui x1 = 4, y = 16.

    Substitusi nilai x :
    ⇒ y = f(x) = a(x − x1)2
    ⇒ y = a(x − 4)2

    Substitusi nilai y = 16 dan x = 0 untuk mencari nilai a.
    ⇒ y = a(x − 4)2
    ⇒ 16 = a(0 − 4)2
    ⇒ 16 = 16a
    ⇒ a = 1

    Substitusi nilai a :
    ⇒ y = a(x − 4)2
    ⇒ y = 1(x2 − 8x + 16)
    ⇒ y = x2 − 8x + 16
    Jawaban : A

  3. Sebuah fungsi kuadrat melalui titik puncak (2,0). Jika fungsi kuadrat tersebut melalui titik (0,4), maka persamaan fungsi kuadrat tersebut adalah .....
    A. f(x) = x2 + 4x + 4D. f(x) = x2 − 2x + 4
    B. f(x) = x2 − 4x + 4E. f(x) = x2 + 2x + 4
    C. f(x) = x2 − 4x − 4

    Pembahasan :
    Jika grafik fungsi kuadrat melalui titik puncak atau titik balik P(p,q), dan melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dinyatakan dengan :

    y = f(x) = a(x − p)2 + q

    Pada soal diketahui p = 2, q = 0, y = 4.

    Substitusi nilai p dan q :
    ⇒ y = f(x) = a(x − p)2 + q
    ⇒ y = a(x − 2)2 + 0
    ⇒ y = a(x − 2)2

    Substitusi nilai x = 0, dan y = 4 :
    ⇒ y = f(x) = a(x − 2)2
    ⇒ 4 = a(0 − 2)2
    ⇒ 4 = 4a
    ⇒ a = 1

    Substitusi nilai a :
    ⇒ y = a(x − 2)2
    ⇒ y = 1(x − 2)2 
    ⇒ y = x2 − 4x + 4
    Jawaban : B

  4. Jika sebuah fungsi kuadrat melalui titik (0,12) dan memotong sumbu x di titik A(3,0) dan B(4,0), maka persamaan fungsi kuadrat tersebut adalah ....
    A. f(x) = x2 + 7x + 12D. f(x) = x2 − 12x + 7
    B. f(x) = x2 − 7x − 12E. f(x) = x2 + 12x + 7
    C. f(x) = x2 − 7x + 12

    Pembahasan :
    Dik : x1 = 3 dan x2 = 4, y = 12

    Substitusi nilai x :
    ⇒ y = f(x) = a(x − x1)(x − x2)
    ⇒ y = a(x − 3)(x − 4)

    Substitusi nilai x = 0, dan y = 12 :
    ⇒ y = a(x − 3)(x − 4)
    ⇒ 12 = a(0 − 3)(0 − 4)
    ⇒ 12 = a(-3)(-4)
    ⇒ a = 1

    Substitusi nilai a :
    ⇒ y = 1(x − 3)(x − 4)
    ⇒ y = x2 − 7x + 12
    Jadi, persamaan fungsi kuadratnya adalah y = f(x) = x2 − 7x + 12.
    Jawaban : C

  5. Persamaan fungsi kuadrat yang melalui titik-titik (0,-6), (-1,0), dan (1,-10) adalah ....
    A. f(x) = x2 − 5x − 6D. f(x) = x2 − 2x − 3
    B. f(x) = x2 + 5x − 6E. f(x) = x2 − 6x − 5
    C. f(x) = x2 − 5x + 6

    Pembahasan :
    Jika grafik fungsi kuadrat melalui tiga titik (x1,y1), (x2,y2), dan (x3,y3), maka persamaan fungsi kuadratnya dapat dinyatakn dengan :

    y = f(x) = ax2 + bx + c

    Substitusi nilai x dan y dari titik-titik yang diketahui sehingga diperoleh :
    Untuk titik (0,-6) :
    ⇒ -6 = a.02 + b.0 + c
    ⇒ c = -6
    Untuk titik (-1,0) :
    ⇒ 0 = a.(-1)2 + b.(-1) + c
    ⇒ 0 = a − b + c
    ⇒ a − b = -c
    ⇒ a − b = -(-6)
    ⇒ a − b = 6
    ⇒ a = 6 + b

    Untuk titik (1,-10) :
    ⇒ -10 = a.12 + b.1 + c
    ⇒ -10 = a + b + c
    ⇒ a + b = -10 − c
    ⇒ a + b = -10 − (-6)
    ⇒ a + b = -4
    ⇒ 6 + b + b = -4
    ⇒ 6 + 2b = -4
    ⇒ 2b = -10
    ⇒ b = -5, maka a = 6 + (-5) = 1

    Maka persamaan fungsi kuadratnya adalah :
    y = f(x) = ax2 + bx + c
    y = f(x) = 1x2 + (-5)x + (-6)
    y = f(x) = x2 − 5x − 6
    Jawaban : A


Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements