PEMBAHASAN SOAL SBMPTN MATEMATIKA LOGARITMA

Posted by on 04 October 2015 - 8:23 AM

  1. Nilai x yang memenuhi persamaan : 2log 2log (2x+1 + 3) = 1 + 2log x adalah ....
    A. log ⅔
    B. 2log 3
    C. 3log 2
    D. -1 atau 3
    E. 8 atau ½

    Pembahasan :
    2log 2log (2x+1 + 3) = 1 + 2log x
    2log 2log (2x+1 + 3) = 2log 2 + 2log x
    2log 2log (2x+1 + 3) = 2log 2x
    2log (2x+1 + 3) = 2x
    2log (2x+1 + 3) = 2log 22x
    ⇒ 2x+1 + 3 = 22x
    ⇒ 2x.21 + 3 = (2x)2
    ⇒ 0 = (2x)2 - 2.2x - 3
    ⇒ (2x)2 - 2.2x - 3 = 0

    Perhatikan bentuk di atas! Persamaan tersebut merupakan persamaan kuadrat. Untuk mempermudah, misalkan 2x = p sehingga persamaannya menjadi :
    ⇒ p2 - 2p - 3 = 0
    ⇒ (p + 1)(p - 3) = 0
    ⇒ p = -1 atau p = 3

    Substitusi nilai p untuk memperoleh nilai x.
    Untuk p = -1
    ⇒ 2x = p
    ⇒ 2x = -1
    ⇒ x = 2log -1

    Untuk p = 3
    ⇒ 2x = p
    ⇒ 2x = 3
    ⇒ x = 2log 3
    Jadi, nilai x yang memenuhi adalah 2log 3.
    Jawaban : B

  2. Jika diketahui persamaan logaritma berikut ini :
    2log a  = m
    3log b
    3log a  = n
    2log b
    Dengan a > 1 dan b > 1, maka nilai mn adalah ....
    A. 2log 3D. (3log 2)2
    B. 3log 2E. (2log 3)2
    C. 4log 9

    Pembahasan :
    m  = 2log a 3log b
    n 3log a 2log b
    m  = 2log a  . 2log b
    n 3log b 3log a
    m  = 2log a 2log b
    n 3log a 3log b

    Ingat kembali rumus logaritma berikut :
    alog b = 1
    blog a

    Dengan menggunakan rumus tersebut, maka bentuk persamaan yang kita peroleh di atas, dapat disederhankan menjadi :
    mn = (2log a. alog 3).(2log b. blog 3)
    mn = 2log 3. 2log 3
    mn = (2log 3)2
    Jawaban : E

  3. Jika 2log x + 4log √y = 4log z2, maka nilai z2 sama dengan ....
    A. x√yD. √xy
    B. x2yE. √y
    C. xy

    Pembahasan :
    Ingat kembali rumus logaritma berikut :
    alog b = a2log b2

    Dengan rumus di atas, maka persamaan di soal dapat diubah :
    2log x + 4log √y = 4log z2
    22log x2 + 4log √y = 4log z2
    4log x2 + 4log √y = 4log z2
    4log x2.√y = 4log z2
    ⇒ x2.√y = z2
    Jadi, nilai z2 = x2.√y.
    Jawaban : B

  4. Perhatikan bentuk pembagian berikut :
    3 + log (log x)  = ......
    3 log (log x1000)

    Nilai dari bentuk di atas adalah .....
    A. 1 + 1
    log (log x)
    B.  1  + 1
    300 1000 log (log x)
    C.  1  + 1
    3 100 log (log x)
    D. 1⅓
    E. ⅓

    Pembahasan :
    3 + log (log x)  = log 1000 + log (log x)
    3 log (log x1000) 3 log (1000 log x)
    3 + log (log x)  = log (1000 log x)
    3 log (log x1000) 3 log (1000 log x)
    3 + log (log x)  = 1
    3 log (log x1000) 3
    Jawaban : E



Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements