Pembahasan Ujian Nasional Matematika 2008 No 16-20

Posted by on 12 January 2016 - 8:40 PM

  1. Diketahui matriks :
    A = - a     4 -
    -1   c
    B = - 2     b -
    d   -3
    C = - 1   -3 -
    3    4
    D = - 0    1 -
    1    0

    Jika keempat matriks tersebut memenuhi persamaan matriks A + B = C . D, maka nilai a + b + c + d sama dengan ....
    A. -7D. 3
    B. -5E. 7
    C. 1

    Pembahasan :
    Berdasarkan operasi penjumlahan dua matriks, maka hasil dari A + B adalah :
    ⇒ A = - a     4 -
    -1   c
    ⇒ B = - 2     b -
    d   -3
    ⇒ A + B = - a + 2       4 + b -
    -1 + d    c + (-3)
    ⇒ A + B = - a + 2     4 + b -
    d - 1     c - 3

    Berdasarkan operasi perkalian dua matriks, maka hasil C . D adalah :
    ⇒ C.D = - 1   -3 -  . - 0    1 -
    3    4 1    0
    ⇒ C.D = - 1(0) + (-3)(1)     1(1) + (-3)(0) -
    3(0) + 4(1)             3(1) + 4(0)
    ⇒ C.D = - -3     1 -
    4      3

    Dengan demikian kita peroleh :
    ⇒ A + B = C.D
    ⇒  - a + 2     4 + b -  = - -3    1 -
    d - 1     c - 3 4     3

    Berdasarkan konsep kesamaan matriks, maka kita peroleh :
    Nilai a :
    ⇒ a + 2 = -3
    ⇒ a = -5

    Nilai b :
    ⇒ 4 + b = 1
    ⇒ b = -3

    Nilai c :
    ⇒ c - 3 = 3
    ⇒ c = 6

    Nilai d :
    ⇒ d - 1 = 4
    ⇒ d = 5

    Dengan demikian, hasil jumlah keempatnya adalah :
    ⇒ a + b + c + d = -5 + (-3) + 6 + 5
    ⇒ a + b + c + d = 3
    Jawaban : D

Read more : Kumpulan Soal dan Pembahasan Persamaan Matriks.
  1. Diketahui matriks :
    P = - 2     5 -
    1    3
    Q = - 5     4 -
    1    1

    Jika P-1 adalah invers matriks P dan Q-1 adalah invers matriks Q, maka determinan matriks P-1.Q-1 adalah ...
    A. 223D. -10
    B. 1E.-223
    C. -1

    Pembahasan : 
    Invers matriks P :
    ⇒ P-1 = 1   - 3     -5 -
    6 - 5 -1     2
    ⇒ P-1 = - 3     -5 -
    -1     2

    Invers matriks P :
    ⇒ Q-1 = 1   - 1     -4 -
    5 -4 -1     5
    ⇒ Q-1 = - 1     -4 -
    -1     5

    Hasil kali invers P dan invers Q :
    ⇒ P-1.Q-1 = - 3    -5 -  . - 1    -4 -
    -1    2 -1     5
    ⇒ P-1.Q-1 = - 3(1) + (-5)(-1)     3(-4) + (-5)(5) -
    -1(1) + 2(-1)          -1(-4) + 2(5)
    ⇒ P-1.Q-1 = - 8     -37 -
    -3      14

    Dengan demikian kita peroleh :
    ⇒ |P-1.Q-1| = 8(14) - (-3)(-37)
    ⇒ |P-1.Q-1| = 112 - 111
    ⇒ |P-1.Q-1| = 1
    Jawaban : B

Read more : Kumpulan Soal dan Pembahasan Determinan Matriks.
  1. Diketahui vektor a = 2ti - j + 3k, b = -ti + 2j - 5k, dan c = 3ti + tj + k. Jika vektor (a + b) tegak lurus c, maka nilai 2t sama dengan ....
    A. -2 atau 4/3D. 3 atau 2
    B. 2 atau 4/3E. -3 atau 2
    C. 2 atau -4/3

    Pembahasan :
    ⇒ a + b = (2ti - j + 3k) + (-ti + 2j - 5k)
    ⇒ a + b = 2ti - ti - j + 2j + 3k - 5k
    ⇒ a + b = ti + j - 2k

    Karena vektor (a + b) tegak lurus c, maka berlaku :
    ⇒ (a + b).c = 0
    ⇒ (ti + j - 2k).(3ti + tj + k) = 0
    ⇒ ti(3ti) + j(tj) -2k(k) = 0
    ⇒ 3t2 + t - 2 = 0
    ⇒ (3t - 2)(t + 1) = 0
    ⇒ t = 2/3 atau t = -1
    ⇒ 2t = 4/3 atau 2t = -2
    Jawaban : A

  2. Diketahui vektor a = (-2 3 4) dan b = (x 0 3). Jika panjang proyeksi vektor a pada b adalah 4/5, maka salah satu nilai x adalah ...
    A. 6D. -4
    B. 4E. -6
    C. 2

    Pembahasan :
    Panjang proyeksi vektor a pada b :
    ⇒  a.b  = 4
    |b| 5
    ⇒ 5 a.b = 4|b|
    ⇒ 5(-2.x + 3.0 + 4.3) = 4(√x2 + 9)
    ⇒ 5(-2x + 12) = 4(√x2 + 9)
    ⇒ -10x + 60 = 4(√x2 + 9)
    ⇒ (-10x + 60)2 = {4(√x2 + 9)}2
    ⇒ 100x2 - 1200x + 3600 = 16(x2 + 9)
    ⇒ 100x2 - 1200x + 3600 = 16x2 + 144
    ⇒ 84x2 - 1200x + 3456 = 0
    ⇒ 7x2 - 100x + 288 = 0
    ⇒ (7x - 72)(x - 4) = 0
    ⇒ x = 72/7 atau x = 4
    Jawaban : B

Read more : Contoh Soal Perkalian Titik (Dot Product) Vektor.
  1. Persamaan bayangan parabola y = x2 + 4 karena rotasi dengan pusat O(0,0) sejauh 180o adalah ...
    1. x = y2 + 4
    2. x = -y2 + 4
    3. x = -y2 - 4
    4. y = -x2 - 4
    5. y = x2 + 4

    Pembahasan :
    ⇒  - x' -  = - -1    0 -  . - x -
    y' 0    -1 y
    ⇒  - x' -  = - -x -
    y' -y
    ⇒ x' = -x dan y' = -y
    ⇒ x = -x' dan y = -y'

    Dengan demikian, persamaan bayangannya adalah :
    ⇒ y = x2 + 4
    ⇒ -y' = (-x')2 + 4
    ⇒ -y' = x'2 + 4
    ⇒ y' = -x'2 - 4
    ⇒ y = -x2 - 4
    Jawaban : D

Read more : Kumpulan Soal SBMPTN Transformasi, Refleksi dan Rotasi.


Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements

0 comments :

Post a Comment