Pembahasan Ujian Nasional Matematika 2008 No 1-5

Posted by on 04 January 2016 - 11:54 AM

  1. Ingkaran dari pernyataan "Beberapa bilangan prima adalah bilangan genap" adalah ....
    • Semua bilangan prima adalah bilangan genap
    • Semua bilangan prima bukan bilangan genap
    • Beberapa bilangan prima bukan bilangan genap
    • Beberapa bilangan genp bukan bilangan prima
    • Beberapa bilangan genap adalah bilangan prima

    Pembahasan :
    Pernyataan pada soal merupakan pernyataan berkuantor. Pada pernyataan berkuantor ada dua simbol yang umum digunakan, yaitu simbol ∀ untuk menyatakan semua atau setiap dan simbol Ǝ untuk menyatakan ada atau beberapa.

    Berikut bebeapa keadaan yang umum dalam kalimat berkuantor.
    PernyataanIngkaran
    Semua adalah
    (∀x),P(x)
    Ada yang tidak
    (Ǝx),~P(x)
    Ada/beberapa
    (Ǝx),P(x)
    Semua tidak
    (∀x),~P(x)
    Tidak ada yang
    (∀x),~P(x)
    Ada beberapa
    (Ǝx),P(x)

    Nah berdasarkan keadaan di atas, maka keadaan yang sesuai untuk soal kita adalah keadaan nomor 2 yaitu untuk pernyataan beberapa. Kita misalkan :
    ⇒ (Ǝx) = beberapa bilangan prima
    ⇒ P(x) = bilangan genap

    Maka sesuai dengan prinsip ingkaran di atas, maka ingkaran untuk (Ǝx),P(x) adalah (∀x),~P(x) yang artinya :
    ⇒ (∀x) = semua bilangan prima
    ⇒ ~P(x) = bukan bilangan genap

    Jadi, ingkaran untuk pernyataan "Beberapa bilangan prima adalah bilangan genap" adalah "Semua bilangan prima bukan bilangan genap".
    Jawaban : B

Read more : Rumus Logika Matematika dan Tabel Kebenaran.
  1. Diketahui premis-premis :
    1. Jika Badu rajin belajar dan patuh pada orangtua, maka ayah akan membelikan bola basket.
    2. Ayah tidak membelikan bola basket.
    Kesimpulan yang sah adalah ....
    • Badu rajin belajar dan Badu patuh pada orangtua
    • Badu tidak rajin belajar dan Badu tidak patuh pada orangtua
    • Badu tidak rajin belajar atau Badu tidak patuh pada orangtua
    • Badu tidak rajin belajar dan Badu patuh pada orangtua
    • Badu rajin belajar atau Badu tidak patuh pada orangtua

    Pembahasan :
    Untuk mempersingkat, kita dapat membuat pemisalan sebagai berikut :
    ⇒ Badu rajin belajar = u
    ⇒ Badu patuh pada orangtua = v
    ⇒ Badu rajin belajar dan patuh pada orangtua = p = (u ∧ v)
    ⇒ Ayah membelikan bola basket = q
    ⇒ Ayah tidak membelikan bola basket = ~q

    Berdasarkan Modus Tollens :
    p → q
          ~q
    ∴   ~p

    Kita sudah punya kesimpulan yaitu ~p. Sekarang, yang harus kita lakukan adalah mencari arti dari kesimpulan itu. Nah, karena p = (u ∧ v), maka negasinya adalah :
    ⇒ ~p = ~(u ∧ v)
    ⇒ ~p = ~u ∨ ~v

    Jadi, kesimpulan yang sah dari pernyataan pada soal adalah "Badu tidak rajin belajar atau Badu tidak patuh pada orangtua".
    Jawaban : C

Read more : Menarik Kesimpulan dengan Silogisme, Modus Ponens, dan Modus Tollens.
  1. Bentuk 3√24 + 2√3(√32 - 2√16) dapat disederhanakan menjadi ....
    A. √6D. 6√6
    B. 2√6E. 9√6
    C. 4√6

    Pembahasan : 
    Ingat bahwa dalam operasi matematika, perkalian atau bentuk dalam kurung harus diselesaikan lebih dahulu sebelum penjumlahan.
    ⇒ 3√24 + 2√3(√32 - 2√16) = 3√24 + 2√96 - 4√54
    ⇒ 3√24 + 2√3(√32 - 2√16) = 3(2√6) + 2(4√6) - 4(3√6
    ⇒ 3√24 + 2√3(√32 - 2√16) = 6√6 + 8√6 - 12√6
    ⇒ 3√24 + 2√3(√32 - 2√16) = 2√6
    Jawaban : B

Read more : Soal dan Pembahasan Perkalian Bentuk Akar.
  1. Diketahui 2log 7 = a dan 2log 3 = b, maka nilai dari 6log 14 adalah ....
    A. a/(a+b)D. a/a(1+b)
    B. (a+1)/(a+b)E. (a+1)/(1+b)
    C. (a+1)/(b+1)

    Pembahasan :
    Prinsip penyelesaian soal logaritma di atas adalah mengubah bentuk 6log 14 dalam bentuk logaritma yang diketahui. Berikut salah satu cara yang bisa kita lakukan :
    ⇒ 6log 14 = 2log 14
    2log 6
    ⇒ 6log 14 = 2log (7.2)
    2log (3.2)
    ⇒ 6log 14 = 2log 7 + 2log 2
    2log 3 + 2log 2
    ⇒ 6log 14 = 2log 7 + 1
    2log 3 + 1

    Pada soal diketahui 2log 7 = a dan 2log 3 = b, maka :
    ⇒ 6log 14 = a + 1
    b + 1
    Jawaban : C

Read more : Kumpulan Soal dan Pembahasan Logaritma.
  1. Persamaan grafik fungsi kuadrat yang mempunyai titik balik minimum (1,2) dan melalui titik (2,3) adalah ...
    1. y = x2 - 2x + 1
    2. y = x2 - 2x + 3
    3. y = x2 + 2x - 1
    4. y = x2 + 2x + 1
    5. y = x2 - 2x - 3

    Pembahasan : 
    Untuk menyusun fungsi kuadrat, ada beberapa kondisi khusus yang dapat kita perhatikan :
    1. Jika diketahui titik potong dengan sumbu x (x1, 0) dan (x2, 0)
      y = a(x − x1)(x − x2)

    2. Jika diketahui titik balik (p,q)
      y = a(x − p)2 + q

    Karena titik puncak berupa titik balik minimum diketahui, maka kita gunakan rumus kedua. Pada soal diketahui titik balik (p,q) = (1,2) maka :
    ⇒ y = a(x − p)2 + q
    ⇒ y = a(x − 1)2 + 2

    Karena melalui titik (2,3) maka diketahui x = 2 dan y = 3, sehingga :
    ⇒ y = a(x − 1)2 + 2
    ⇒ 3 = a(2 − 1)2 + 2
    ⇒ 3 = a + 2
    ⇒ a = 3 - 2
    ⇒ a = 1

    Jadi, persamaan grafik fungsi kuadrat tersebut adalah : 
    ⇒ y = a(x − 1)2 + 2
    ⇒ y = 1(x − 1)2 + 2
    ⇒ y = (x − 1)2 + 2
    ⇒ y = x2 − 2x + 1 + 2
    ⇒ y = x2 − 2x + 3
    Jawaban : B


Read more : Contoh Soal dan Jawaban Menentukan Persamaan Fungsi Kuadrat.


Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements

0 comments :

Post a Comment