Rumus dan Contoh Soal Menyusun Persamaan Kuadrat Baru #2

Posted by on 16 March 2016 - 4:06 PM

Bagian 2 - Menyusun persamaan kuadrat baru yang akar-akarnya berkebalikan dengan akar-akar persamaan kuadrat awal. Pada artikel sebelumnya, telah dibahas rumus khusus untuk menyusun persamaan kuadrat baru yang akar-akarnya merupakan n kali dari akar persamaan kuadrat sebelumnya. Pada kesempatan ini kita akan belajar bagaimana cara menemukan rumus untuk menyusun persamaan kuadrat baru yang akar-akarnya merupakan kebalikan dari akar-akar persamaan kuadrat yang lama. Dengan kata lain, kita akan menyusun persamaan kuadrat baru yang akar-akarnya (1/x1 dan 1/x2).

Rumus Umum Menyusun Persamaan Kuadrat Baru

Sebelum kita mempelajari rumus khusus untuk menyusun persamaan kuadrat baru bagian kedua (#2) ini, ada baiknya kita mengingat kembali rumus umum untuk menyusun persamaan kuadrat baru sebab rumus inilah yang dikembangkan sehingga diperoleh rumus khusus.

Perlu diketahui bahwa rumus khusus hanya berlaku untuk kasus-kasus tertentu dan pada bagian kedua ini, rumus khususnya hanya digunakan untuk menyusun persamaan kuadrat baru yang akar-akarnya berkebalikan (1/x1 dan 1/x2) dengan akar-akar persamaan kuadrat sebelumnya.

Rumus umum menyusun persaman kuadrat baru dikembangkan berdasarkan rumus jumlah dan hasil kali akar sehingga kita tidak perlu mencari aar-akarnya terlebih dahulu. Dengan demikian, modal utama yag harus kita kuasai adalah rumus jumlah akar dan hasil kali akar.

Dengan memanfaatkan rumus jumlah akar dan hasil kali akar, kita dapat menyusun persamaan kuadrat baru berdasarkan hubungan akar-akarnya dengan persamaan kuadrat yang sudah diketahui.

Jadi, sesuai dengan namanya, menyusun persamaan kuadrat baru pada dasarnya adalah menyususn suatu persamaan kuadrat baru berdasarkan persamaan kuadrat sebelumnya.

Secara sederhana, rumus umum menyusun persamaan kuadrat baru adalah :
x2 − (Jumlah akar)x + hasil kali akar = 0

Biasanya akan ditulis menggunakan simbol tertentu misalnya :
x2 − (α + β) + α.β= 0

Degan α dan β merupakan akar-akar persamaan kuadrat yang baru.

Baca juga : Cara Menyusun Persamaan Kuadrat Baru Rumus #1.

Rumus Khusus Persamaan Kuadrat Baru Dengan Akar 1/x1 dan 1/x2

Jika x1 dan x2 adalah akar-akar dari persamaan kuadrat ax2 + bx + c = 0, maka persamaan kuadrat baru yang akar-akarnya berkebalikan (1/x1 dan 1/x2) dapat ditentukan dengan rumus khusus yang diperoleh berdasarkan langkah-langkah berikut :
  1. Tentukan jumlah akar persamaan kuadrat awal
  2. Tentukan hasil kali akar persamaan kuadrat awal
  3. Tentukan jumlah akar persamaan kuadrat baru
  4. Tentukan hasil kali akar persamaan kuadrat baru
  5. Susun persamaan kuadrat baru

Rumus dan Contoh Soal Menyusun Persamaan Kuadrat Baru

Berdasarkan langkah di atas, maka hal pertama yang harus kita lakuan adalah mengulik persamaan kuadrat awalnya.

Persamaan Kuadrat Awal :
ax2 + bx + c = 0

Jumlah akar : 
x1 + x2 = -b
a

Hasil kali akar :
x1 . x2 = c
a

Nilai a, b, dan c akan kita peroleh dari persamaan kuadrat ax2 + bx + c = 0.

Kita sudah menentukan jumlah akar dan hasil kali akar persamaan kuadrat awal, langkah selanjutnya adalah menentukan jumlah akar dan hasil kali akar persamaan kuadrat baru.

Jumlah akar :
⇒ 1/x1 + 1/x2 = x1 + x2
x1 . x2
⇒ 1/x1 + 1/x2 = -b/a
c/a
⇒ 1/x1 + 1/x2 = -b
c

Hasil kali akar :
⇒ 1/x1 . 1/x2 = 1
x1 . x2
⇒ 1/x1 . 1/x2 = 1
c/a
⇒ 1/x1 . 1/x2 = a
c

Selanjutnya kita susun persamaan kuadrat baru sesuai dengan rumus umumnya yaitu :
⇒ x2 − (Jumlah akar)x + hasil kali akar = 0
⇒ x2 − (-b/c)x + a/c = 0
⇒ x2 + b/cx + a/c = 0

Untuk menghilangan penyebutnya, kita kali persamaannya dengan c :
⇒ cx2 + bx + a = 0

Jadi, rumus khusus untuk menyusun persamaan kuadrat baru yang akar-akarnya berkebalikan (1/x1 dan 1/x2) adalah :
cx2 + bx + a = 0

Nilai a, b dan c kita peroleh dari persamaan kuadrat awal yaitu dari persamaan ax2 + bx + c = 0.

Kunjungi channel youtube kami "Edukiper" untuk melihat video pembahasan rumus khusus lainnya. Ada sembilan (#1 s.d #9) rumus khusus menyusun persamaan kuadrat baru yang umum dan sering keluar dalam soal.

Baca juga : Menentukan Akar Dengan Melengkapi Kuadrat Sempurna.

Contoh Soal Menyusun Persamaan Kuadrat Baru

Jika x1 dan x2 adalah akar-akar dari persamaan kuadrat 2x2 + 4x + 7 = 0, maka tentukanlah persamaan kuadrat baru yang akar-akarnya berkebalikan dengan persamaan kuadrat tersebut.

Pembahasan :
Untuk membandingkan hasil yang akan kita peroleh, kita akan coba membahasa soal di atas menggunakan rumus umum dan rumus khusus.

Dengan Rumus Umum
Persamaan kuadrat awal : 2x2 + 4x + 7 = 0
Dik : a = 2, b = 4, dan c = 7

Jumlah akar :
⇒ x1 + x2 = -b/a
⇒ x1 + x2 = -4/2
⇒ x1 + x2 = -2

Hasil kali akar :
⇒ x1 . x2 = c/a
⇒ x1 . x2 = 7/2

Selanjutnya kita tentukan jumlah akar dan hasil kali akar untuk persamaan kuadrat baru yang akar-akarnya berkebalikan (1/x1 dan 1/x2).

Jumlah akar :
⇒ 1/x1 + 1/x2 = 1/(x1 + x2)
⇒ 1/x1 + 1/x2 = -b/c
⇒ 1/x1 + 1/x2 = -4/7

Hasil kali akar :
⇒ 1/x1 . 1/x2 = 1/(x1 . x2)
⇒ 1/x1 . 1/x2 = a/c
⇒ 1/x1 . 1/x2 = 2/7

Dengan demikian, persamaan kuadrat baru yang akar-akarnya 1/x1 dan 1/x2 adalah :
⇒ x2 − (Jumlah akar)x + hasil kali akar = 0
⇒ x2 − (-4/7)x + 2/7 = 0
⇒ 7x2 + 4x + 2 = 0

Dengan Rumus Khusus
Berdasarkan penguraian kita sebelumnya, persamaan kuadrat baru yang akar-akarnya berkebalikan dapat ditentukan dengan rumus khusus yaitu :
cx2 + bx + a = 0

Dari soal diketahui a = 2, b = 4 dan c = 7, maka kita peroleh :
⇒ cx2 + bx + a = 0
⇒ 7x2 + 4x + 2 = 0

Kita bisa lihat hasil yang diperoleh dengan rumus khusus sama dengan hasil yang diperoleh dengan rumus umum. Terserah anda ingin menggunakan rumus atau cara yang mana, yang penting anda harus paham bahwa rumus khusus tidak berlaku untuk semua soal. Selain itu, anda juga harus siap menghafal banyak rumus khusus jika lebih suka cara yang singkat.

Baca juga : Menentukan Akar Persamaan Kuadrat Rumus abc.

Untuk pembahasan contoh soal lainnya, silahkan kunjungi channel youtube kami "Edukiper". Total ada sembilan (#1 s.d #9) pembahasan contoh soal untuk masing-masing bentuk khusus dalam persamaan kuadrat baru.


Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi dan follow IG Tafsi Junior. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements