CONTOH DAN PEMBAHASAN MENENTUKAN SUKU KE-N BARISAN ARITMATIKA

Posted by on 10 October 2017 - 11:08 AM

Edutafsi.com - Kumpulan soal dan pembahasan tentang cara menentukan suku ke-n suatu barisan atau deret aritmatika. Pada pembahasan sebelumnya, edutafsi telah membahas beberapa model soal tentang menentukan rumus suku ke-n barisan aritmatika. Pada kesempatan ini, edutafsi akan membahas beberapa contoh soal tentang menentukan suku ke-n barisan aritmatika. Saat diminta menentukan rumus suku ke-n biasanya dinyatakan dalam variabel n sedangkan saat diminta menentukan suku ke-n, artinya kita menentukan bilangan yang merupakan suku tersebut. Contoh soal ini disusun berdasarkan model soal yang sering muncul sehingga diharapkan dapat menambah model soal yang dikuasai oleh murid.

Contoh 6 : Suku Pertama dan Beda Diketahui

Jika suku pertama suatu barisan aritmatika sama dengan 40 dan beda barisan tersebut adalah 5, maka suku ke-10 barisan tersebut sama dengan .....
A. U10 = 100
B. U10 = 85
C. U10 = 80
D. U10 = 75
E. U10 = 70

Pembahasan :
Dik : a = 40, b = 5
Dit : U10 = .... ?

Sesuai dengan konsep barisan aritmatika, hubungan antara suku pertama, beda barisan, dan suku ke-n dinyatakan dengan rumus berikut :
⇒ Un = a + (n - 1)b

Karena a, b, dan n sudah diketahui, maka diperoleh :
⇒ Un = a + (n - 1)b
⇒ U10 = 40 + (10 - 1)5
⇒ U10 = 40 + 9.5
⇒ U10 = 40 + 45
⇒ U10 = 85

Jadi, suku kesepuluh barisan tersebut adalah 85.
Jawaban : B

Contoh 7 : Dua Suku Sebarang Diketahui

Jika suku keempat dan suku kesembilan suatu barisan aritmatika adalah 14 dan 29, maka suku ke-100 barisan tersebut adalah ....
A. U100 = 306
B. U100 = 302
C. U100 = 300
D. U100 = 284
E. U100 = 268

Pembahasan :
Dik : U4 = 14, U9 = 29
Dit : U100 = .... ?

Persamaan untuk suku keempat :
⇒ U4 =  14
⇒ a + (4 - 1)b = 14
⇒ a + 3b = 14
⇒ a = 14 - 3b .... (1)

Persamaan untuk suku kesembilan :
⇒ U9 =  29
⇒ a + (9 - 1)b = 29
⇒ a + 8b = 29 .... (2)

Substitusi persamaan (1) ke persamaan (2) :
⇒ a + 8b = 29
⇒ (14 - 3b) + 8b = 29
⇒ 14 + 5b = 29
⇒ 5b = 29 - 14
⇒ 5b = 15
⇒ b = 3

Substitusi nilai b ke persamaan (1) :
⇒ a = 14 - 3b
⇒ a = 14 - 3.3
⇒ a = 14 - 9
⇒ a = 5

Suku ke-100 barisan tersebut :
⇒ U100 = a + (100 - 1)b
⇒ U100 = a + 99b
⇒ U100 = 5 + 99(3)
⇒ U100 = 5 + 297
⇒ U100 = 302

Jadi, suku ke-100 barisan tersebut adalah 302.
Jawaban : B

Contoh 8 : Jumlah n Suku Pertama Diketahui

Jika jumlah n suku pertama suatu deret aritmatika dinyatakan dengan Sn = 2n2 + 5n, maka suku ke-4 deret tersebut adalah ....
A. U4 = 46
B. U4 = 32
C. U4 = 24
D. U4 = 19
E. U4 = 15

Pembahasan :
Dik : Sn = 2n2 + 5n
Dit : U4 = ... ?

Suku pertama deret tersebut sama dengan jumlah 1 suku pertamanya :
⇒ a = U1 = S1
⇒ a = 2(1)2 + 5(1)
⇒ a = 2 + 5
⇒ a = 7

Jumlah 2 suku pertama (a + U2) adalah sebagai berikut :
⇒ a + U2 = S2
⇒ 7 + U2 = 2(2)2 + 5(2)
⇒ 7 + U2 = 8 + 10
⇒ 7 + U2 = 18
⇒ U2 = 18 - 7
⇒ U2 = 11

Karena a dan U2 diketahui, maka beda barisa tersebut adalah :
⇒ b = U2  - a
⇒ b = 11 - 7
⇒ b = 4

Dengan demikian, suku keempatnya adalah :
⇒ U4 = a + (4 - 1)b
⇒ U4 = a + 3b
⇒ U4 = 7 + 3.4
⇒ U4 = 7 + 12
⇒ U4 = 19

Jadi, suku keempat deret tersebut adalah 19.
Jawaban : D

Contoh 9 : Suku Pasangan Terbalik Diketahui

Jumlah 12 suku pertama suatu deret aritmatika adalah 1.230. Jika suku kesepuluh deret tersebut adalah 155, maka suku ketiga deret itu sama dengan ....
A. U3 = 50
B. U3 = 65
C. U3 = 70
D. U3 = 80
E. U3 = 95

Pembahasan :
Dik : n = 12, Sn = 1.230, U10 =155
Dit : U3 = .... ?

Rumus jumlah n suku pertama diperoleh dengan cara menjumlahkan suku barisan aritmatika awal dengan suku urutan terbalik deret tersebut. Dalam hal ini (jika jumlah sukunya 12), maka suku pertama dijumlahkan dengan suku terkahir, suku kedua dijumlahkan dengan suku ke-11, dan suku ketiga dijumlahkan dengan suku ke-10.

Masud suku 'terbalik' disini adalah urutan suku yang dibalik :
Urutan awal     : U1,   U2,   U3,  U4, U5, U6, U7, U8, U9, U10, U11, U12
Urutan terbalik : U12, U11, U10, U9, U8, U7, U6, U5, U4, U3,  U2,   U1

Jika dinyatakan dalam a dan Un, maka rumus jumlah n suku pertama ditulis :
⇒ Sn = n/2 (a + Un)

Pada soal ini, yang dimaksud suku pertama adalah U1 dan suku terakhir adalah U12. Jika nomor suku tersebut dijumlahkan (1 + 12 = 13), maka akan diperoleh nilai 13. Nah, jika nomor suku ke-3 dan suku ke-10 dijumlahkan (3 + 10 = 13), maka juga dihasilkan nilai 13.

Jika dijumlahkan, jumlah suku pertama dan suku terakhir (a + Un) akan sama hasilnya dengan jumlah suku ketiga dan suku kesepuluh (U3 + U10), dengan demikian berlaku :
⇒ a + Un = U3 + U10

Dengan demikian, rumus jumlah n suku pertama di atas, dapat kita ubah menjadi :
⇒ Sn = n/2 (U3 + U10)
⇒ 1.230 = 12/2 (U3 + 155)
⇒ 1.230 = 6 (U3 + 155)
⇒ 1.230 = 6U3 + 930
⇒ 6U3 = 1.230 - 930
⇒ 6U3 = 300
⇒ U3 = 50

Jadi, suku ketiga deret tersebut adalah 50.
Jawaban :  A

Contoh 10 : Diketahui Beberapa Suku

Diberikan sebuah barisan aritmatika sebagai berikut : 30, 28, 26, 24, .... Suku ke-50 barisan tersebut adalah .....
A. U50 = -68
B. U50 = -64
C. U50 = -24
D. U50 = 24
E. U50 = 64

Contoh soal menentukan suku ke-n barisan aritmatika

Pembahasan :
Dik : a = 30, b = 28 - 30 = -2
Dit : U50 = .... ?

Sesuai dengan rumus menentukan suku ke-n, maka :
⇒ Un = a + (n - 1)b
⇒ U50 = 30 + (50 - 1)(-2)
⇒ U50 = 30 + 49(-2)
⇒ U50 = 30 - 98
⇒ U50 = -68

Jadi, suku kelimapuluh barisan tersebut adalah -68.
Jawaban : A

Read more : Contoh Barisan Aritmatika No 11 - 15.


Edutafsi.com adalah blog bahan belajar sekolah yang ditujukan untuk membantu murid belajar. Dukung edutafsi untuk terus berkembang dengan like laman facebook edutafsi, follow IG Tafsi Junior, dan subscribe youtube Tafsi Video. Terimakasih telah berkunjung ke blog ini. Semoga bermanfaat.

Advertisements